This is a base class designed to handle the learning of the underlying coefficients, hyperparameters, and parameters associated with a specific learning instance. Polymorphism allows for the implied methods to be used across several similar classes.
Fields
lpdf$val
current value
lpdf$para
current model parameters
lpdf$coeff
current coefficients
lpdf$compute_val
on calling
update
, compute value and store inval
lpdf$grad
current gradient with respect to coefficients
lpdf$gradhyp
current gradient with respect to covariance hyperparameters
lpdf$gradpara
current gradient with respect to model parameters
lpdf$compute_grad
on calling
update
, compute gradient with respect to coefficients and store ingrad
lpdf$compute_gradhyp
on calling
update
, compute gradient with respect to covariance hyperparameters and store ingradhyp
lpdf$compute_gradpara
on calling
update
, compute gradient with respect to model parameters and store ingradpara
lpdf$update(coeff)
update using new coefficients
lpdf$optcg(tol,epoch)
do optimization with respect to coefficients via conjugate gradient
lpdf$optnewton()
do optimization via matrix inversion, one Newton step
lpdf$updateom()
update based on recent version of
outermod
lpdf$updatepara(para)
update using new model parameters
lpdf$updateterms(terms)
update using new
terms
lpdf$hess()
returns the hessian with respect to coefficients
lpdf$hessgradhyp()
returns gradient of
hess()
with respect to covariance hyperparameterslpdf$hessgradpara()
returns the gradient of
hess()
with respect to model parameterslpdf$diaghess()
returns the diagonal of the hessian with respect to coefficients
lpdf$diaghessgradhyp()
returns the gradient of
diaghess()
with respect to covariance hyperparameterslpdf$diaghessgradpara()
returns the gradient of
diaghess()
with respect to model parameterslpdf$paralpdf(para)
compute the log-prior on the parameters, useful for fitting
lpdf$paralpdf_grad(para)
gradient of
paralpdf(para)
See also
container class: lpdfvec
derived classes: loglik_std
,
loglik_gauss
, loglik_gda
,
logpr_gauss